explain.depesz.com

A tool for finding a real cause for slow queries.

Result: y8xK

options
Did it help? Consider supporting us - Bitcoin address: 12v2hUztAk2LgzQ9H9LMwuU32urHMjZQnq
# exclusive inclusive rows x rows loops node
1. 245.349 10680.494 ↑ 2.5 4 1

Merge Right Join (cost=7.19..74179.49 rows=10 width=305) (actual time=10680.129..10680.494 rows=4 loops=1)

  • Merge Cond: (p.input_data = d.id)
2. 850.374 10434.995 ↑ 1.1 173986 1

Merge Join (cost=7.19..75077.04 rows=183718 width=234) (actual time=0.192..10434.995 rows=173986 loops=1)

  • Merge Cond: (p.input_data = input.input_data)
3. 852.056 9255.653 ↑ 1.1 173986 1

Merge Join (cost=7.19..69917.74 rows=183718 width=222) (actual time=0.173..9255.653 rows=173986 loops=1)

  • Merge Cond: (p.input_data = stg1.input_data)
4. 845.359 8081.949 ↑ 1.1 173986 1

Merge Join (cost=5.50..62948.54 rows=183718 width=186) (actual time=0.153..8081.949 rows=173986 loops=1)

  • Merge Cond: (p.input_data = Stage2_Output.input_data)
5. 848.011 6918.814 ↑ 1.1 173986 1

Merge Join (cost=3.90..55217.36 rows=183723 width=150) (actual time=0.132..6918.814 rows=173986 loops=1)

  • Merge Cond: (p.input_data = stage3.input_data)
6. 1859.470 5753.105 ↑ 1.1 173986 1

Nested Loop (cost=2.72..47004.01 rows=183723 width=114) (actual time=0.111..5753.105 rows=173986 loops=1)

  • Join Filter: (p.impression = istr.id)
7. 853.393 2675.733 ↑ 1.1 173986 1

Merge Join (cost=1.68..30467.90 rows=183723 width=102) (actual time=0.070..2675.733 rows=173986 loops=1)

  • Merge Cond: (p.input_data = s.input_data)
8. 864.555 1501.546 ↑ 1.1 173986 1

Merge Join (cost=1.68..19031.56 rows=183723 width=58) (actual time=0.049..1501.546 rows=173986 loops=1)

  • Merge Cond: (p.input_data = t.input_data)
9. 315.531 315.531 ↑ 1.1 173986 1

Index Scan using Category1_Results_pkey on Category1_Results p (cost=0.00..7652.17 rows=183723 width=18) (actual time=0.025..315.531 rows=173986 loops=1)

10. 321.460 321.460 ↑ 1.1 173986 1

Index Scan using Category3_Results_pkey on Category3_Results t (cost=0.00..8624.43 rows=183787 width=40) (actual time=0.016..321.460 rows=173986 loops=1)

11. 320.794 320.794 ↑ 1.1 173986 1

Index Scan using Category2_Results_pkey on Category2_Results s (cost=0.00..8681.47 rows=183787 width=44) (actual time=0.014..320.794 rows=173986 loops=1)

12. 1217.890 1217.902 ↑ 1.0 4 173986

Materialize (cost=1.04..1.08 rows=4 width=20) (actual time=0.001..0.007 rows=4 loops=173986)

13. 0.012 0.012 ↑ 1.0 4 1

Seq Scan on Category1_impression_str istr (cost=0.00..1.04 rows=4 width=20) (actual time=0.005..0.012 rows=4 loops=1)

14. 317.698 317.698 ↑ 1.1 173986 1

Index Scan using Stage3_Output_file_pkey on Stage3_Output_file stage3 (cost=0.00..8178.35 rows=183871 width=36) (actual time=0.015..317.698 rows=173986 loops=1)

15. 317.776 317.776 ↑ 1.1 173986 1

Index Scan using analysis_file_pkey on analysis_file Stage2_Output (cost=0.00..8168.99 rows=183718 width=36) (actual time=0.014..317.776 rows=173986 loops=1)

16. 321.648 321.648 ↑ 1.1 173986 1

Index Scan using Stage1_output_file_pkey on Stage1_output_file stg1 (cost=0.00..8199.07 rows=183856 width=36) (actual time=0.014..321.648 rows=173986 loops=1)

17. 328.968 328.968 ↑ 1.1 173986 1

Index Scan using input_file_pkey on input_file input (cost=0.00..8618.05 rows=183788 width=36) (actual time=0.014..328.968 rows=173986 loops=1)

18. 0.022 0.150 ↑ 2.5 4 1

Materialize (cost=0.00..39.59 rows=10 width=75) (actual time=0.046..0.150 rows=4 loops=1)

19. 0.067 0.128 ↑ 2.5 4 1

Nested Loop Left Join (cost=0.00..39.49 rows=10 width=75) (actual time=0.039..0.128 rows=4 loops=1)

  • Join Filter: (t.id = d.input_quality)
20. 0.025 0.025 ↑ 2.5 4 1

Index Scan using input_data_exists_index on input_data d (cost=0.00..28.59 rows=10 width=45) (actual time=0.013..0.025 rows=4 loops=1)

  • Index Cond: (test_session = 1040)
21. 0.036 0.036 ↑ 1.0 4 4

Seq Scan on quality_codes t (cost=0.00..1.04 rows=4 width=38) (actual time=0.002..0.009 rows=4 loops=4)