explain.depesz.com

A tool for finding a real cause for slow queries.

Result: meQ

options
Did it help? Consider supporting us - Bitcoin address: 12v2hUztAk2LgzQ9H9LMwuU32urHMjZQnq
# exclusive inclusive rows x rows loops node
1. 4.958 1,952.349 ↑ 2.3 67 1

HashAggregate (cost=251,315.39..251,316.96 rows=157 width=4) (actual time=1,952.282..1,952.349 rows=67 loops=1)

2. 13.517 1,947.391 ↑ 29.4 3,322 1

Nested Loop (cost=1,678.36..250,826.31 rows=97,817 width=4) (actual time=39.496..1,947.391 rows=3,322 loops=1)

3. 878.785 1,910.394 ↑ 32.1 2,935 1

Hash Left Join (cost=1,678.36..75,649.71 rows=94,105 width=8) (actual time=39.477..1,910.394 rows=2,935 loops=1)

  • Hash Cond: ((crowdbreaks_tweet.place_id)::text = (crowdbreaks_place.place_id)::text)
  • Filter: ((crowdbreaks_tweet.coordinates @ '0103000020E61000000100000005000000AE47E17A141E5FC00000000000003840AE47E17A141E5FC029ED0DBE30B14840A4703D0AD7A350C029ED0DBE30B14840A4703D0AD7A350C00000000000003840AE47E17A141E5FC00000000000003840'::geometry) OR ((crowdbreaks_place.bounding_box && '0103000020E61000000100000005000000AE47E17A141E5FC00000000000003840AE47E17A141E5FC029ED0DBE30B14840A4703D0AD7A350C029ED0DBE30B14840A4703D0AD7A350C00000000000003840AE47E17A141E5FC00000000000003840'::geometry) AND _st_overlaps(crowdbreaks_place.bounding_box, '0103000020E61000000100000005000000AE47E17A141E5FC00000000000003840AE47E17A141E5FC029ED0DBE30B14840A4703D0AD7A350C029ED0DBE30B14840A4703D0AD7A350C00000000000003840AE47E17A141E5FC00000000000003840'::geometry)))
4. 992.652 992.652 ↓ 1.0 801,934 1

Index Scan using crowdbreaks_tweet_crreated_at on crowdbreaks_tweet (cost=0.00..36,121.24 rows=799,554 width=125) (actual time=0.019..992.652 rows=801,934 loops=1)

  • Index Cond: ((created_at > '2012-04-18 12:47:19.550875+00'::timestamp with time zone) AND (created_at < '2012-04-19 12:47:19.550882+00'::timestamp with time zone))
5. 21.998 38.957 ↓ 1.0 15,848 1

Hash (cost=521.38..521.38 rows=15,838 width=469) (actual time=38.957..38.957 rows=15,848 loops=1)

  • Buckets: 1024 Batches: 8 Memory Usage: 322kB
6. 16.959 16.959 ↓ 1.0 15,848 1

Seq Scan on crowdbreaks_place (cost=0.00..521.38 rows=15,838 width=469) (actual time=0.007..16.959 rows=15,848 loops=1)

7. 23.480 23.480 ↑ 1.0 1 2,935

Index Scan using crowdbreaks_incomingkeyword_tweet_id on crowdbreaks_incomingkeyword (cost=0.00..1.85 rows=1 width=12) (actual time=0.007..0.008 rows=1 loops=2,935)

  • Index Cond: (tweet_id = crowdbreaks_tweet.tweet_id)