explain.depesz.com

A tool for finding a real cause for slow queries.

Result: bl7

options
Did it help? Consider supporting us - Bitcoin address: 12v2hUztAk2LgzQ9H9LMwuU32urHMjZQnq
# exclusive inclusive rows x rows loops node
1. 70.245 11726.554 ↓ 2.5 319 1

HashAggregate (cost=33192.68..33195.20 rows=126 width=32) (actual time=11725.796..11726.554 rows=319 loops=1)

2. 271.649 11656.309 ↓ 133.3 16795 1

Nested Loop Left Join (cost=1.07..33191.10 rows=126 width=32) (actual time=1281.582..11656.309 rows=16795 loops=1)

3. 220.945 11267.095 ↓ 133.3 16795 1

Nested Loop (cost=1.07..33154.19 rows=126 width=20) (actual time=1281.519..11267.095 rows=16795 loops=1)

4. 1946.904 10911.790 ↓ 133.3 16795 1

Nested Loop (cost=1.07..33118.81 rows=126 width=20) (actual time=1281.484..10911.790 rows=16795 loops=1)

  • Join Filter: ((s.annee)::double precision = ((round((random() * 50::double precision)) + 1950::double precision)))
5. 0.020 0.020 ↑ 1.0 1 1

Result (cost=0.00..0.02 rows=1 width=0) (actual time=0.017..0.020 rows=1 loops=1)

6. 3765.569 8964.866 ↓ 34.1 860874 1

Hash Join (cost=1.07..32739.58 rows=25280 width=16) (actual time=6.718..8964.866 rows=860874 loops=1)

  • Hash Cond: (s.contenant_id = c.id)
7. 3291.492 5199.266 ↑ 2.0 860874 1

Append (cost=0.00..26165.61 rows=1685361 width=16) (actual time=6.594..5199.266 rows=860874 loops=1)

8. 6.594 6.594 ↑ 287142.0 3 1

Seq Scan on stock s (cost=0.00..13271.26 rows=861426 width=16) (actual time=6.588..6.594 rows=3 loops=1)

9. 382.134 382.134 ↓ 1.0 169085 1

Seq Scan on stock_1950 s (cost=0.00..2531.78 rows=161778 width=16) (actual time=0.011..382.134 rows=169085 loops=1)

10. 361.539 361.539 ↓ 1.0 168524 1

Seq Scan on stock_1960 s (cost=0.00..2523.47 rows=161247 width=16) (actual time=0.012..361.539 rows=168524 loops=1)

11. 373.675 373.675 ↓ 1.0 168487 1

Seq Scan on stock_1970 s (cost=0.00..2523.47 rows=161247 width=16) (actual time=0.014..373.675 rows=168487 loops=1)

12. 374.972 374.972 ↓ 1.0 168789 1

Seq Scan on stock_1980 s (cost=0.00..2529.01 rows=161601 width=16) (actual time=0.010..374.972 rows=168789 loops=1)

13. 367.025 367.025 ↓ 1.0 168497 1

Seq Scan on stock_1990 s (cost=0.00..2523.47 rows=161247 width=16) (actual time=0.010..367.025 rows=168497 loops=1)

14. 41.835 41.835 ↓ 1.0 17489 1

Seq Scan on stock_2000 s (cost=0.00..263.15 rows=16815 width=16) (actual time=0.010..41.835 rows=17489 loops=1)

15. 0.018 0.031 ↑ 1.0 3 1

Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.031..0.031 rows=3 loops=1)

  • Buckets: 1024 Batches: 1 Memory Usage: 1kB
16. 0.013 0.013 ↑ 1.0 3 1

Seq Scan on contenant c (cost=0.00..1.03 rows=3 width=8) (actual time=0.006..0.013 rows=3 loops=1)

17. 134.360 134.360 ↑ 1.0 1 16795

Index Scan using vin_pkey on vin v (cost=0.00..0.27 rows=1 width=8) (actual time=0.006..0.008 rows=1 loops=16795)

  • Index Cond: (id = s.vin_id)
18. 117.565 117.565 ↑ 1.0 1 16795

Index Scan using appellation_pkey on appellation a (cost=0.00..0.27 rows=1 width=20) (actual time=0.004..0.007 rows=1 loops=16795)

  • Index Cond: (v.appellation_id = id)