explain.depesz.com

A tool for finding a real cause for slow queries.

Result: C4M

options
Did it help? Consider supporting us - Bitcoin address: 12v2hUztAk2LgzQ9H9LMwuU32urHMjZQnq
# exclusive inclusive rows x rows loops node
1. 0.007 579.701 ↑ 1.0 50 1

Limit (cost=30957.24..30957.37 rows=50 width=16) (actual time=579.696..579.701 rows=50 loops=1)

2. 4.209 579.694 ↑ 443.4 100 1

Sort (cost=30957.12..31067.98 rows=44343 width=16) (actual time=579.690..579.694 rows=100 loops=1)

  • Sort Key: (sum(wc.count_))
  • Sort Method: top-N heapsort Memory: 29kB
3. 29.615 575.485 ↑ 3.1 14452 1

GroupAggregate (cost=28404.71..29262.36 rows=44343 width=16) (actual time=533.444..575.485 rows=14452 loops=1)

4. 67.492 545.870 ↓ 1.1 61107 1

Sort (cost=28404.71..28542.79 rows=55229 width=16) (actual time=533.401..545.870 rows=61107 loops=1)

  • Sort Key: w.id_
  • Sort Method: external merge Disk: 1544kB
5. 14.851 478.378 ↓ 1.1 61107 1

Hash Join (cost=7126.10..23109.56 rows=55229 width=16) (actual time=245.197..478.378 rows=61107 loops=1)

  • Hash Cond: (wc.corpus_id_ = c.id_)
6. 157.549 462.153 ↓ 1.1 61107 1

Hash Join (cost=7089.88..22313.94 rows=55229 width=24) (actual time=243.799..462.153 rows=61107 loops=1)

  • Hash Cond: (wc.word_id_ = w.id_)
7. 61.247 61.247 ↑ 1.0 390548 1

Seq Scan on words_corpuses wc (cost=0.00..6502.48 rows=390548 width=24) (actual time=0.110..61.247 rows=390548 loops=1)

8. 13.442 243.357 ↓ 1.0 45326 1

Hash (cost=6361.59..6361.59 rows=44343 width=8) (actual time=243.357..243.357 rows=45326 loops=1)

  • Buckets: 4096 Batches: 2 Memory Usage: 901kB
9. 229.915 229.915 ↓ 1.0 45326 1

Seq Scan on words w (cost=0.00..6361.59 rows=44343 width=8) (actual time=0.025..229.915 rows=45326 loops=1)

  • Filter: (value_ ~ '^[м-с]'::text)
10. 0.489 1.374 ↑ 1.0 929 1

Hash (cost=24.61..24.61 rows=929 width=8) (actual time=1.374..1.374 rows=929 loops=1)

  • Buckets: 1024 Batches: 1 Memory Usage: 37kB
11. 0.885 0.885 ↑ 1.0 929 1

Seq Scan on corpuses c (cost=0.00..24.61 rows=929 width=8) (actual time=0.016..0.885 rows=929 loops=1)

  • Filter: (name_ = 'main'::text)