explain.depesz.com

A tool for finding a real cause for slow queries.

Result: BPa3 : jafdsjajf

options
Did it help? Consider supporting us - Bitcoin address: 12v2hUztAk2LgzQ9H9LMwuU32urHMjZQnq
# exclusive inclusive rows x rows loops node
1. 0.000 0.000 ↓ 0.0

Hash Semi Join (cost=1,194.61..1,584.65 rows=1 width=1,645) (actual time=.. rows= loops=)

  • Hash Cond: (candidates.id = subquery_candidates.id)
2. 0.000 0.000 ↓ 0.0

Nested Loop Left Join (cost=359.11..749.12 rows=10 width=1,645) (actual time=.. rows= loops=)

3. 0.000 0.000 ↓ 0.0

Nested Loop Left Join (cost=359.11..662.39 rows=10 width=1,483) (actual time=.. rows= loops=)

4. 0.000 0.000 ↓ 0.0

Hash Left Join (cost=359.11..567.46 rows=10 width=1,085) (actual time=.. rows= loops=)

  • Hash Cond: (candidates.country_id = countries.id)
5. 0.000 0.000 ↓ 0.0

Nested Loop Left Join (cost=352.54..560.76 rows=10 width=1,042) (actual time=.. rows= loops=)

6. 0.000 0.000 ↓ 0.0

Nested Loop Left Join (cost=352.54..477.95 rows=10 width=1,017) (actual time=.. rows= loops=)

7. 0.000 0.000 ↓ 0.0

Hash Right Join (cost=352.54..392.42 rows=10 width=739) (actual time=.. rows= loops=)

  • Hash Cond: (folders.id = folder_assignements.folder_id)
8. 0.000 0.000 ↓ 0.0

Seq Scan on folders (cost=0.00..33.57 rows=1,657 width=45) (actual time=.. rows= loops=)

9. 0.000 0.000 ↓ 0.0

Hash (cost=352.41..352.41 rows=10 width=698) (actual time=.. rows= loops=)

10. 0.000 0.000 ↓ 0.0

Nested Loop Left Join (cost=47.17..352.41 rows=10 width=698) (actual time=.. rows= loops=)

11. 0.000 0.000 ↓ 0.0

Bitmap Heap Scan on candidates (cost=42.86..82.56 rows=10 width=694) (actual time=.. rows= loops=)

  • Recheck Cond: (id = ANY ('{1727642,2280476,2471876,568905,2471751,569206,170255,2471192,148147,569479}'::integer[]))
12. 0.000 0.000 ↓ 0.0

Bitmap Index Scan on candidates_pkey (cost=0.00..42.86 rows=10 width=0) (actual time=.. rows= loops=)

  • Index Cond: (id = ANY ('{1727642,2280476,2471876,568905,2471751,569206,170255,2471192,148147,569479}'::integer[]))
13. 0.000 0.000 ↓ 0.0

Bitmap Heap Scan on folder_assignements (cost=4.31..26.91 rows=6 width=8) (actual time=.. rows= loops=)

  • Recheck Cond: (candidate_id = candidates.id)
14. 0.000 0.000 ↓ 0.0

Bitmap Index Scan on index_folder_assignements_on_candidate_id (cost=0.00..4.31 rows=6 width=0) (actual time=.. rows= loops=)

  • Index Cond: (candidate_id = candidates.id)
15. 0.000 0.000 ↓ 0.0

Index Scan using index_users_on_profile_id on users (cost=0.00..8.54 rows=1 width=278) (actual time=.. rows= loops=)

  • Index Cond: (profile_id = candidates.id)
  • Filter: ((profile_type)::text = 'Candidate'::text)
16. 0.000 0.000 ↓ 0.0

Index Scan using provinces_pkey on provinces (cost=0.00..8.27 rows=1 width=25) (actual time=.. rows= loops=)

  • Index Cond: (id = candidates.province_id)
17. 0.000 0.000 ↓ 0.0

Hash (cost=4.03..4.03 rows=203 width=43) (actual time=.. rows= loops=)

18. 0.000 0.000 ↓ 0.0

Seq Scan on countries (cost=0.00..4.03 rows=203 width=43) (actual time=.. rows= loops=)

19. 0.000 0.000 ↓ 0.0

Index Scan using index_employments_on_candidate_id on employments (cost=0.00..9.45 rows=3 width=398) (actual time=.. rows= loops=)

  • Index Cond: (candidate_id = candidates.id)
20. 0.000 0.000 ↓ 0.0

Index Scan using index_educations_on_candidate_id on educations (cost=0.00..8.65 rows=2 width=162) (actual time=.. rows= loops=)

  • Index Cond: (candidate_id = candidates.id)
21. 0.000 0.000 ↓ 0.0

Hash (cost=835.19..835.19 rows=25 width=8) (actual time=.. rows= loops=)

22. 0.000 0.000 ↓ 0.0

Nested Loop (cost=0.00..835.19 rows=25 width=8) (actual time=.. rows= loops=)

23. 0.000 0.000 ↓ 0.0

Nested Loop (cost=0.00..626.55 rows=25 width=4) (actual time=.. rows= loops=)

24. 0.000 0.000 ↓ 0.0

Nested Loop (cost=0.00..338.70 rows=20 width=4) (actual time=.. rows= loops=)

25. 0.000 0.000 ↓ 0.0

Nested Loop (cost=0.00..162.81 rows=14 width=8) (actual time=.. rows= loops=)

26. 0.000 0.000 ↓ 0.0

Index Scan using index_employments_on_employer_id on employments (cost=0.00..43.10 rows=14 width=4) (actual time=.. rows= loops=)

  • Index Cond: (employer_id = 2710)
27. 0.000 0.000 ↓ 0.0

Index Scan using candidates_pkey on candidates imported_friends (cost=0.00..8.54 rows=1 width=12) (actual time=.. rows= loops=)

  • Index Cond: (id = public.employments.candidate_id)
28. 0.000 0.000 ↓ 0.0

Index Scan using index_facebook_friends_on_fb_id on facebook_friends (cost=0.00..12.54 rows=2 width=12) (actual time=.. rows= loops=)

  • Index Cond: (fb_id = imported_friends.fb_id)
29. 0.000 0.000 ↓ 0.0

Index Scan using index_relationships_on_contact_id_and_contact_type on relationships (cost=0.00..14.35 rows=3 width=8) (actual time=.. rows= loops=)

  • Index Cond: ((contact_id = facebook_friends.id) AND ((contact_type)::text = 'FacebookFriend'::text))
30. 0.000 0.000 ↓ 0.0

Index Scan using candidates_pkey on candidates subquery_candidates (cost=0.00..8.33 rows=1 width=4) (actual time=.. rows= loops=)

  • Index Cond: (id = relationships.candidate_id)